22/09/2017 - LASSENA AVIO-505 won the Best of Session (IMA-4) Award at DASC’17
Congratulation to AVIO-505 team! The paper “Direct RF Sampling Transceiver Architecture Applied to VHF Radio, ACARS, and ELTs” won the Best of... (+ de détail)
22/09/2017 - Congratulations,Neda Navidi! Best Paper Award in ICCSTE 2017.
Congratulations to Mme. Neda Navidi who was presented the Best Paper Award in ICCSTE 2017 (Vancouve,Canada,August 7-8,2017). Mme. Neda Navidi is... (+ de détail)
22/09/2017 - Congratulations! Best Student Paper Award in ICNS 2017
Congratulations to Mr. Abdessamad Amrhar who was presented the Best Student Paper Award in ICNS 2017( Herdon, VA,USA, April 18-20, 2017). We also... (+ de détail)
26/09/2015 - Adrien Mixte passed successfully his master oral exam !
Congratulations to Adrien Mixed which received honors for his defense on August 28, 2015. His project, ibNav, focused on the development of a... (+ de détail)
26/09/2015 - Mr. Marc-Antoine Fortin made his PhD oral exam successfully and distinction « Excellence »
Congratulations to Mr. Marc-Antoine Fortin who made his PhD oral exam successfully. The works of mister Fortin's master's degree, subject the title... (+ de détail)
26/09/2015 - Mrs.Neda Navidi gets the Best Poster Award attributed by the UAV-g 2015
Congratulations to Mrs. Neda Navidi who gets the Best Poster Award during the UAV-g 2015 conference, in Toronto, Canada, the September 2nd 2015.... (+ de détail)
22/05/2015 - LASSENA’s work awarded at 2015 ICNS
The work entitled "Integrated Direct RF Sampling Front-end for VHF Avionics Systems" has been recognized as the Best Future Communications Paper... (+ de détail)
20/10/2014 - LASSENA’s work awarded at 33rd DASC
The work entitled "DME/DME Navigation using a Single Low-Cost SDR and Sequential Operation" has been recognized as the Best Paper of the Session... (+ de détail)
09/10/2014 - New research project awarded by NSERC in the field of protection against satellite interference: AVIO-601
Recently, Professor René Jr. Landry from the Department of Electrical Engineering of ÉTS has obtained a Collaborative Research and Development... (+ de détail)
24/09/2014 - Stéphane Ehouman has obtained the second prize at ReSMiQ Innovation Day
Congratulations to Mr. Stéphane Ehouman who has obtained the second prize at ReSMiQ Innovation Day competition celebrated on September 18, 2014.... (+ de détail)
27/08/2014 - Mohammad Honarparvar passed successfully his Ph.D. oral exam (DGA-1033)
Congratulations to Mr. Mohammad Honarparvar who passed the Ph.D. oral examination part of his DGA-1033. Mohammad's thesis is entitled : "Design of... (+ de détail)
27/06/2014 - AMOOS Conferences
The LASSENA is pleased to invite you to international conferences about AMOOS project, Autonomous Mission for On-Orbit Servicing, of the 2014 ISU... (+ de détail)
20/06/2013 - Performance improvements of a navigation algorithm INS / GPS low cost used in urban areas
To provide a solution robust and accurate navigation , GPS receivers must operate in optimal conditions , that is to say have a direct line of... (+ de détail)
08/04/2013 - Marinvent and ETS successfully develop a wireless prototyping process for Marinvent’s APM through Engage project
Montreal, Quebec, Monday, April 8, 2013 – Marinvent announces today the successful completion of its Airfoil Performance Monitor (APM)-Engage... (+ de détail)
13/03/2013 - LASSENA’s participation at the 8th day of discoveries in 2013
Wednesday, March 13th was held the 8th edition of the discoveries day. On this day held a poster contest on research projects students master's... (+ de détail)
06/06/2012 - Philippe Lavoie made his defense viva(master’s degree) successfully and distinction "excellence"
Congratulations to Philippe Lavoie who made his viva (master's degree) successfully. The works of mister Lavoie's master's degree, subject the title... (+ de détail)
23/11/2011 - Software radios for highly integrated system architecture
The project aims at establishing new methods and techniques of processing of the digital signals for universal effective and strong plans of... (+ de détail)
22/11/2011 - The collaboration AÉROÉTS - Marinvent Corporation
The collaboration AÉROÉTS - Marinvent Corporation is a unique initiative establishing a consortium offering services of university and industrial... (+ de détail)
30/09/2011 - Embarked systems for the aerospace industry, a key specialization for the industry
The Department of electric engineering is proud to announce the creation of the new concentration embarked Systems for the aerospace industry of... (+ de détail)
03/05/2010 - Mister Kaveh Mollaiyan takes successfully his doctoral written examination
Congratulations to mister Kaveh Mollaiyan who took successfully his examination written by PhD. Mister . Mollaiyan's thesis is entitled: "... (+ de détail)
23/04/2010 - Mister Ramdane Ait-Aoudia pursues his works in the GRN of the LACIME within the framework of a training course S3
M. Ramdane Ait-Aoudia poursuit ses travaux au GRN du LACIME dans le cadre d'un stage S3 d'un projet en collaboration avec la compagnie iMetrik. Les... (+ de détail)
14/08/2009 - Mister Guillaume Lamontagne takes successfully his master’s degree in electric engineering
Mister Guillaume Lamontagne passed successfully his oral defense within the framework of his master's degree in electric engineering. Under the... (+ de détail)
10/06/2008 - ÉTS in space
A group of professors of the Laboratory of communications and integration of the microelectronics ( LACIME) of the ÉTS collaborated in the... (+ de détail)
Photo RLandry
Bienvenue sur le site de [Fr] [En] [Es] [De]
René Jr. Landry
CV TL Laboratories Teaching Research Research trainee
Informations on the project
Title 11- Novel Architectures for High Sensitivity Indoor GNSS Receiver using Cognitive Techniques

Project description :

English Synthetized Version (21 lines) :

The main objective is to solve present technological limitations and scientific challenges related to GPS-Denied navigation for indoor environments, autonomously, without any external infrastructures (WiFi, GSM, RFID, etc.). Promising new digital signal processing architectures and methods will be investigated to enable indoor tridimensional precise positioning, navigation and to determine robust 3D spatial attitude of an autonomous GNSS receiver. This receiver will dynamically evolve in extremely weak navigation satellite signal scenarios (so-called “indoor”). The program will exploit notably system redundancy, new properties and possibilities of existing new GNSS signals. To enable such new capabilities, the methodology will investigate first the advantages of using a multi-antenna GNSS receiver. This in-house receiver has all capabilities to receive any kind of available GNSS signals from multiple antennas (typically 2 to 8). GNSS signal and frequency diversity analysis along with multipath signals and high sensitivity processing will be investigated using a patented and fully “open-design” universal GNSS architecture. The second major initiative will be conducted based on the principles derived from the telecommunication cognitive radio (CR) technology. This unique receiver will be referred to as the “intelligent Multi-Antennas Cognitive GNSS Receiver (iMACGR)”. A third investigation will aim to evaluate benefits of using raw measurements from very low cost inertial sensors such as 3D gyroscope, accelerometer and magnetometer, with adaptive learning processes to assist the iMACGR indoors. Several potential billion dollar industries will emerge by these GPS-Denied applications. The results of this program will open a completely new area of applications with GNSS navigation and reliable attitude determination indoors. This research program will strongly contribute towards new indoor guidance capabilities and businesses, new applications and security improvements for first responders, tourism, medical, defense and transportation industries, etc. This research program will directly be profitable to other numerous applications and engineering fields, including telecommunications and geomatic sciences.

2- Research program objectives

The overall goal of this research program is to increase and to extend the functioning capabilities of a cognitive GNSS receiver for indoor use by developing new methods and algorithms and evaluating its improved performance in real-time, real-world scenarios and environments. The proposed approach to this complex problem consists of exploiting GNSS diversity characteristics and modulation structure attributes [1] in a multi-antenna configuration, using CR methods and metrics adapted to GNSS receivers aided by appropriate low cost inertial measurements and attitude determination algorithms. The short-term objectives are to develop new CR metrics adapted to GNSS receiver architecture, to embed proper digital signal processing (DSP) in real-time, and to analyse the quantitative performance measurements. These new embedded metrics will take into account the special characteristics of existing GNSS signals. Improving currently available and developing new HS GPS algorithms will be continued. The developed GNSS cognitive metrics will also be used for assessing subsystem performance quality such as, monitoring, evaluating research and establishing success criteria during each milestone objective. The medium-term objectives are to improve SNR and sensitivity by investigating wideband multi-antenna direct and multipath GNSS signal processing techniques towards the goal of acquisition and tracking ultra-weak signals. HS analysis of GNSS receiver design research shall continue with multi-antenna algorithmic developments adding inertial attitude orientation of the tracking device. The long-term objective is to integrate the subset technologies within the laboratory prototype to exploit new capabilities, to study and to analyze its improved performance. Indoor multipath raw GNSS signal measurements from four antennas will be combined with inertial measurements to provide more reliable attitude determination and positioning. This aiding information will help the GNSS signal acquisition and tracking engine to output precise and robust indoor positioning and navigation information. Main long-term objective of this research program is to design an operational multi-antenna GNSS receiver which has cognitive intelligence capabilities aided by low cost inertial sensors so that ubiquitous indoor navigation is possible. The autonomous receiver will be intelligent (auto adaptable depending on the environment) and will be able to overcome limitations of signal availability, accuracy, integrity while adding resistance to various types of interference using CR spectrum management. This type of receiver will be patented and establish proof as a ‘gold standard of robustness’ in the field of ultra HS-GNSS receiver. This program will contribute substantially to the science of GNSS receiver design and related applications.

Research Objectives: 1) to develop new digital signal processing algorithms for high sensitivity without the help of other infrastructure, 2) to implement GNSS high sensitivity acquisition and tracking loops (including metrics in the development of the receiver cognition layer) using cognitive radio perception-learning algorithms of the environment, followed by executing actions, leveraging methods of dynamic programming to maximize information gain, 3) to use cognitive radio machine-learning algorithms to perform intelligent selection of channels and satellite signals in order to perform measurement fusion of multiple GNSS signals, 4) measure the performance benefits of new cognitive high sensibility methods and algorithms.

Ideal duration : 3 years
Type of trainee Doctorate
Apply for this research project (trainee)

0 0 0 0 0

COPYRIGHT© 2014 : Powered by the System ReLAN V6.0