26/02/2018 - The AVIO-505 8th and last Scientific Meeting was successfully held!
The 8th and last Scientific Meeting of the AVIO-505 project was successfully held on February 19, 2018, at the Department of Electrical... (+ de détail)
24/01/2018 - Congratulations to Dr Neda Navidi
Congratulations to Dr. Neda Navidi who successfully completed her PhD defense on January 19, 2018. Her thesis "Driving Behavior Assessment... (+ de détail)
19/10/2017 - Dave Côté passed successfully his master oral exam!
Congratulations to Dave Côté who passed his master oral defense on October 4, 2017. His thesis title is "Détermination de l'angle de lacet et... (+ de détail)
22/09/2017 - LASSENA AVIO-505 won the Best of Session (IMA-4) Award at DASC’17
Congratulation to AVIO-505 team! The paper "Direct RF Sampling Transceiver Architecture Applied to VHF Radio, ACARS, and ELTs" won the Best of... (+ de détail)
22/09/2017 - Congratulations,Neda Navidi! Best Paper Award in ICCSTE 2017.
Congratulations to Mme. Neda Navidi who was presented the Best Paper Award in ICCSTE 2017 (Vancouve,Canada,August 7-8,2017). Mme. Neda Navidi is... (+ de détail)
22/09/2017 - Congratulations! Best Student Paper Award in ICNS 2017
Congratulations to Mr. Abdessamad Amrhar who was presented the Best Student Paper Award in ICNS 2017( Herdon, VA,USA, April 18-20, 2017). We also... (+ de détail)
26/09/2015 - Adrien Mixte passed successfully his master oral exam !
Congratulations to Adrien Mixed which received honors for his defense on August 28, 2015. His project, ibNav, focused on the development of a... (+ de détail)
26/09/2015 - Mr. Marc-Antoine Fortin made his PhD oral exam successfully and distinction « Excellence »
Congratulations to Mr. Marc-Antoine Fortin who made his PhD oral exam successfully. The works of mister Fortin's master's degree, subject the title... (+ de détail)
26/09/2015 - Mrs.Neda Navidi gets the Best Poster Award attributed by the UAV-g 2015
Congratulations to Mrs. Neda Navidi who gets the Best Poster Award during the UAV-g 2015 conference, in Toronto, Canada, the September 2nd 2015.... (+ de détail)
22/05/2015 - LASSENA’s work awarded at 2015 ICNS
The work entitled "Integrated Direct RF Sampling Front-end for VHF Avionics Systems" has been recognized as the Best Future Communications Paper... (+ de détail)
20/10/2014 - LASSENA’s work awarded at 33rd DASC
The work entitled "DME/DME Navigation using a Single Low-Cost SDR and Sequential Operation" has been recognized as the Best Paper of the Session... (+ de détail)
09/10/2014 - New research project awarded by NSERC in the field of protection against satellite interference: AVIO-601
Recently, Professor René Jr. Landry from the Department of Electrical Engineering of ÉTS has obtained a Collaborative Research and Development... (+ de détail)
24/09/2014 - Stéphane Ehouman has obtained the second prize at ReSMiQ Innovation Day
Congratulations to Mr. Stéphane Ehouman who has obtained the second prize at ReSMiQ Innovation Day competition celebrated on September 18, 2014.... (+ de détail)
27/08/2014 - Mohammad Honarparvar passed successfully his Ph.D. oral exam (DGA-1033)
Congratulations to Mr. Mohammad Honarparvar who passed the Ph.D. oral examination part of his DGA-1033. Mohammad's thesis is entitled : "Design of... (+ de détail)
27/06/2014 - AMOOS Conferences
The LASSENA is pleased to invite you to international conferences about AMOOS project, Autonomous Mission for On-Orbit Servicing, of the 2014 ISU... (+ de détail)
20/06/2013 - Performance improvements of a navigation algorithm INS / GPS low cost used in urban areas
To provide a solution robust and accurate navigation , GPS receivers must operate in optimal conditions , that is to say have a direct line of... (+ de détail)
08/04/2013 - Marinvent and ETS successfully develop a wireless prototyping process for Marinvent’s APM through Engage project
Montreal, Quebec, Monday, April 8, 2013 – Marinvent announces today the successful completion of its Airfoil Performance Monitor (APM)-Engage... (+ de détail)
13/03/2013 - LASSENA’s participation at the 8th day of discoveries in 2013
Wednesday, March 13th was held the 8th edition of the discoveries day. On this day held a poster contest on research projects students master's... (+ de détail)
06/06/2012 - Philippe Lavoie made his defense viva(master’s degree) successfully and distinction "excellence"
Congratulations to Philippe Lavoie who made his viva (master's degree) successfully. The works of mister Lavoie's master's degree, subject the title... (+ de détail)
23/11/2011 - Software radios for highly integrated system architecture
The project aims at establishing new methods and techniques of processing of the digital signals for universal effective and strong plans of... (+ de détail)
22/11/2011 - The collaboration AÉROÉTS - Marinvent Corporation
The collaboration AÉROÉTS - Marinvent Corporation is a unique initiative establishing a consortium offering services of university and industrial... (+ de détail)
30/09/2011 - Embarked systems for the aerospace industry, a key specialization for the industry
The Department of electric engineering is proud to announce the creation of the new concentration embarked Systems for the aerospace industry of... (+ de détail)
03/05/2010 - Mister Kaveh Mollaiyan takes successfully his doctoral written examination
Congratulations to mister Kaveh Mollaiyan who took successfully his examination written by PhD. Mister . Mollaiyan's thesis is entitled: "... (+ de détail)
23/04/2010 - Mister Ramdane Ait-Aoudia pursues his works in the GRN of the LACIME within the framework of a training course S3
M. Ramdane Ait-Aoudia poursuit ses travaux au GRN du LACIME dans le cadre d'un stage S3 d'un projet en collaboration avec la compagnie iMetrik. Les... (+ de détail)
14/08/2009 - Mister Guillaume Lamontagne takes successfully his master’s degree in electric engineering
Mister Guillaume Lamontagne passed successfully his oral defense within the framework of his master's degree in electric engineering. Under the... (+ de détail)
10/06/2008 - ÉTS in space
A group of professors of the Laboratory of communications and integration of the microelectronics ( LACIME) of the ÉTS collaborated in the... (+ de détail)
Photo RLandry
Bienvenue sur le site de [Fr] [En] [Es] [De]
René Jr. Landry
CV TL Laboratories Teaching Research Research trainee
Informations on the project
Title 43- Algorithms and methods to increase the robustness and precision of an Attitude Determination System using multi-antennas GNSS Receiver

1. General information

This component of the research program shall be undertaken by a PhD candidate to develop advanced algorithms and calibration methods so that commercial GPS receivers configured with multiple antenna elements can estimate the orientation of the antenna plate to acquire precise body attitude for an Army soldier-navigation-solution (SNS). Two approaches are being studied for attitude estimation: 1) with low cost inertial sensors, 2) with multi-element antenna system on a commercial GPS receiver. The outcome of these two studies may require that for very precise attitude estimation a tightly coupled GPS/INS configuration may be needed to satisfy the stringent pointing accuracy for SNS. Potential improvement of using GNSS signal will be investigation.

2. Research Project Proposal

Principle objective of this research program is to develop advanced attitude estimation algorithms, receiver channel calibration methods, receiver tracking loop design to establish attitude estimation limits with a GPS receiver connected to multiple antennas. To achieve these objectives, a PhD student shall gain expertise over a period of three years in advanced signal processing techniques, Bayesian estimation, probability density function estimation techniques by using Machine Learning theory, and adaptive control systems for the design of carrier tracking loop with minimal steady state phase noise error. Research emphasis shall be placed on the development of algorithms using the above scientific disciplines to produce precise carrier phase measurements out of the receiver tracking loops.

In addition to estimating a precise carrier phase measurement, it is also imperative for accurate attitude estimates that the receiver mitigates multipath error. The problem of inferring attitude from multiple antennas requires a minimum of three position solutions, one baseline and the other two auxiliary, from these solutions Euler angles: roll, pitch and yaw can be computed. Due to small separation between antenna elements, it may be required to use a double differenced phase measurement to eliminate receiver clock phase noise.

To satisfy schedule and cost constraints this PhD student shall also have an opportunity to develop expertise in the use of Matlab/Simulink toolset considered a de-facto standard worldwide for modern engineering product analysis and synthesis using Model Based Design (MBD) methodologies, for the purposes of rapid prototyping, requirements analysis, software verification and validation per conventional commercial and military standards. Computational loading analysis of these models should be quantified so that cost benefit analysis can be performed for the selection of hardware platforms using the above tools.

Some outcomes of this research program could be but not limited to: 1) to develop an algorithm that can provide accurate carrier phase measurements, 2) minimize multi-path errors, 3) design a high order adaptive control system for the receiver code and carrier tracking loops such that zero steady state error is realized within short settling time periods, 4) expansion of Matlab/Simulink proprietary GNSS receiver toolset capabilities currently available at ETS laboratories.

A suggested chronological research roadmap is provided subject to minor alterations as required. First the doctoral student needs to explore previous work (literature review) in the area of attitude estimation techniques implemented in GPS receivers, then develop a detailed calibration procedure for the purposes of eliminating inter channel receiver bias error. Investigate deterministic and stochastic filtering techniques to minimize carrier phase noise outputs. Followed by, designing higher order control system for tracking loops so that zero steady state error is realized. This research program shall conclude with an extensive report documenting and demonstrating test results with satellite signal generated and real world data sets, these results shall be compared with outputs of a standard GPS receiver to demonstrate enhanced reduction in phase noise out of the tracking loops and thus enhanced and robust attitude estimates.

3. Importance for the partner

Capstone report has listed new technologies which are important for the Canadian Soldier. Numerica Technologies is working on a larger project of ETS contribution. The determination of the position of a target for a soldier is of great importance for our partner. The soldier should be equipped with light devices, efficient technologies, precise and robust embedded systems. Such attitude determination system should have all these qualifications so that the soldier will use it with minimal complexity. For example only, the end result device may be integrated within the helmet of the soldier. An optical monocular lenses could be deployed with a cross target in the center of the optical such that the soldier can fix his desired object. The electronic within the system should be capable of computing in real-time the precise attitude and position of the target such that this information could be relayed to other team element part of the soldier infrastructure. ETS will play a portion of this role to focus its research on attitude determination. The ranging determination and analysis will be cover by another research group of Numerica.

Ideal duration : 3 years
Type of trainee Doctorate
Apply for this research project (trainee)

0 0 0 0 0

COPYRIGHT© 2018 : Powered by the System ReLAN V6.0