14- Driving behaviour metrics validation

Project description :

Summary (MAX of 2100 characters with spaces)

This project aims to establish new design methods for robust and efficient automotive navigation and optimal management of a fleet of vehicles in harsh environments. In addition, the project also aims to develop innovative metrics for real-time analysis of dangerous driving behaviour as well as real-time analysis of car accidents in order to significantly improve global safety of Canadian drivers. In general, this research proposes to combine measurements from a high sensitivity GPS receiver with data coming from a self-contained inertial navigation system and other complementary autonomous sensors such as odometers and magnetometers. Moreover, in order to provide an affordable solution, the targeted system will be based exclusively on the use of very low cost sensors. It is expected that this project will help reduce the environmental footprint of motor vehicles in addition to having a significant positive impact on overall vehicle safety. For example, improving vehicle localisation accuracy and robustness in harsh environments can significantly reduce the time to find a stolen or misplaced vehicle, which can have an important impact on Canadian companies’ finances. Furthermore, having a robust and precise solution for monitoring vehicle behaviour can lead to the implementation of a new taxation system based on car usage or on driving behaviour, which according to recent studies, can help reduce vehicle greenhouse gas emissions by up to 10%. In addition, accurate reconstruction of car accidents in real-time allow prediction of specific parameters of an accident scene thus improving reaction time and vehicle safety. The proof-of-concept demonstrator will be evaluated in-laboratory and on-road using simulation equipment and a car test platform under real operating conditions in order to characterize protocols and system performance. The project will contribute to international initiatives for the definition of new standards and contribute to Canadian efforts to reduce greenhouse gas emissions, and create new employment opportunities for the team of highly qualified personnel.

Responsibilities of the candidate:

According to the schedule, this trainee student will be in charge of the following tasks:

1) 4-22 Metric validation in controlled environment

2) 4-23 Final driving behaviour test realisation

3) 4-25 Analysis metrics validation and performance analysis

The main objective of this training is to assist the research team in the development and validation of metrics for analyzing driving behaviour. To achieve this objective, the student must first set up various test scenarios including but not limited to sudden accelerations, tight turns, sudden braking and controlled skids. These metrics will be first tested and validated on simulated measurements in order to assess their performance in a controlled environment. Subsequently, the student will be involved in carrying out a series of real tests performed by a professional driver on a closed circuit. During these tests, the student will mainly evaluate the real-time analysis aspect of the system, as well as, the accuracy of the results. Following this test phase, the student will analyze the results in order to characterize the current performances of the developed metrics, to investigate their main weaknesses and to explore possible improvements.

Loading